Subscribe to RSS
DOI: 10.1055/s-2002-28505
Enantioselective Allyltitanation. Synthesis of (-)-Slaframine
Publication History
Publication Date:
14 May 2002 (online)

Abstract
An enantioselective synthesis of the indolizidine alkaloid (-)-slaframine from aldehyde 1 is reported. The stereogenic centers at C-1 and C-8a are introduced by an enantioselective allyltitanation and a Mitsunobu reaction. Reductive double cyclization of the acyclic compound (-)-10 affords the bicyclic skeleton of (-)-slaframine.
Key words
allyl complexes - titanium - Mitsunobu reaction - indolizidine - slaframine
- 1a
Hoffmann RW. Angew. Chem., Int. Ed. Engl. 1982, 21: 555 - 1b
Yamamoto Y.Maruyama K. Heterocycles 1982, 18: 357 - 1c
Hoffmann R. W. Angew. Chem., Int. Ed. Engl. 1987, 26: 489 - 1d
Hoppe D. Angew. Chem., Int. Ed. Engl. 1984, 23: 932 - 1e
Mulzer J.Kattner L.Strecker AR.Schröder C.Buschmann J.Lehmann C.Luger P. J. Am. Chem. Soc. 1991, 113: 4218 - For reviews see:
- 2a
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 - 2b
Roush WR. In Comprehensive Organic Chemistry Vol. 2:Trost BM. Pergamon Press; Oxford: 1991. p.1-53 - 2c
Roush WR. In Houben-Weyl: Methods of Organic Chemistry Vol. E21b:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.1410-1486 - For reviews see:
- 3a
Marshall JA. Chem. Rev. 1996, 96: 31 - 3b
Thomas EJ. In Houben-Weyl: Methods of Organic Chemistry Vol. E21b:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.1508-1540 - 4 For a review see:
Thomas EJ. In Houben-Weyl: Methods of Chemistry Vol. E21b:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.1491-1507MissingFormLabel - 5
Hafner A.Duthaler RO.Marti R.Rihs G.Rothe-Streit P.Schwarzenbach F. J. Am. Chem. Soc. 1992, 114: 2321 - 6a
Rainey DP.Smalley EB.Crump MH.Strong FM. Nature (London) 1965, 205: 203 - 6b
Aust SD.Broquist HP. Nature (London) 1965, 205: 203 - 7a
Byers JH.Broquist HP. J. Dairy. Sci. 1960, 43: 873 - 7b
Byers JH.Broquist HP. J. Dairy. Sci. 1961, 44: 1179 - For general reviews see:
- 8a
Broquist HP. Annu. Rev. Nutr. 1985, 5: 391-409 - 8b
Howard AS.Michael JP. In The Alkaloids Vol. 28:Brossi A. Academic Press; New York: 1986. p.183-308 - 8c
Elbein AD.Molyneux RJ. In Alkaloids: Chemical and Biological Perspectives Vol. 5:Pelletier SW. Wiley; New York: 1987. p.1-54 - 8d
Broquist HP.Snyder JJ. In Microbial Toxins Vol. 7:Ajl SJ.Kadis S.Montie TC. Academic Press; New York: 1971. p.317 - 8e
Molyneux RJ.James LF. In Mycotoxins and PhytoalexinsSarma RP.Salunkhe DK. CRC Press; Boca Raton FL: 1991. p.637-656 - 9
Guengerich FP.Aust SD. Mol. Pharmacol. 1977, 13: 185 - 10 General review:
Croom WJ.Hagler WM.Froetschel MA.Johnson AD. J. Anim. Sci. 1995, 73: 1499 - 11a
Froetschel MA.Amos HE.Evans JJ.Croom WJ.Hagler WM. J. Anim. Sci. 1989, 76: 827 - 11b
Jacques K.Harmon DL.Cromm WJ.Hagler WM. J. Dairy. Sci. 1989, 72: 443 - 12a
Aust SD. Biochem. Pharmacol. 1969, 18: 929 - 12b
Aust SD. Biochem. Pharmacol. 1970, 19: 427 - 13
Gardiner RA.Rinehart KL.Snyder JJ.Broquist HP. J. Am. Chem. Soc. 1968, 90: 5639 ; and references cited therein - 14a
Guengerich FP.Broquist HP. Bioorganic Chemistry Vol. 2:van Tamelen EE. Academic Press; New York: 1978. Chap. 4. - 14b
Clevenstine EC.Broquist HP.Harris TM. Biochemistry 1979, 18: 3659 - 14c
Clevenstine EC.Walter P.Harris TM.Broquist HP. Biochemistry 1979, 18: 3663 - 14d
Schneider MJ.Ungemach FS.Broquist HP.Harris TM. J. Am. Chem. Soc. 1982, 104: 6863 - 14e
Harris CM.Schneider MJ.Ungemach FS.Hill JE.Harris TM. J. Am. Chem. Soc. 1988, 110: 940 - 15a
Cartwright D.Gardiner RA.Rinehart KL. J. Am. Chem. Soc. 1970, 92: 7615 - 15b
Gensler WJ.Hu MW. J. Org. Chem. 1973, 38: 3848 - 15c
Gobao RA.Bremmer ML.Weinreb SM. J. Am. Chem. Soc. 1982, 104: 7065 - 15d
Schneider MJ.Harris TM. J. Org. Chem. 1984, 49: 3681 - 15e
Dartmann M.Flitsch W.Krebs B.Pandl K.Westfechtel A. Liebigs Ann. Chem. 1988, 695 - 15f
Shono T.Matsumura Y.Katoh S.Takeuchi K.Sasaki K.Kamada T.Shimizu R. J. Am. Chem. Soc. 1990, 112: 2368 - 15g
Wasserman HH.Vu CB. Tetrahedron Lett. 1994, 35: 9779 - 16a
Choi J.-R.Han S.Cha JK. Tetrahedron Lett. 1991, 32: 6469 - 16b
Pearson WH.Bergmeier SC. J. Org. Chem. 1991, 56: 1976 - 16c
Pearson WH.Bergmeier SC.Williams JP. J. Org. Chem. 1992, 57: 3977 - 16d
Knapp S.Gibson FS. J. Org. Chem. 1992, 57: 4802 - 16e
Sibi MP.Christensen JW.Li B.Renhowe PA. J. Org. Chem. 1992, 57: 4329 - 16f
Knight DW.Sibley AW. Tetrahedron Lett. 1993, 34: 6607 - 16g
Hua DH.Park J.-G.Katsuhira T.Bharathi SN. J. Org. Chem. 1993, 58: 2144 - 16h
Gmeiner P.Junge D. J. Org. Chem. 1995, 60: 3910 - 16i
Szeto P.Lathbury DC.Gallagher T. Tetrahedron Lett. 1995, 36: 6957 - 16j
Knight DW.Sibley AW. J. Chem. Soc., Perkin Trans. 1 1997, 2179 - 16k
Sibi MP.Christensen JW. J. Org. Chem. 1999, 64: 6434 - 16l
Comins DL.Fulp AB. Org. Lett. 1999, 1: 1941 - 16m
Carretero JC.Arrayas RG. Synlett 1999, 49 - 16n
Pourashraf M.Delair P.Rasmussen MO.Greene AE. J. Org. Chem. 2000, 65: 6966 - 17
Feng X.Edstrom E. Tetrahedron: Asymmetry 1999, 10: 99 - 18 For a study on the hydroboration of homoallylic alcohols see:
Jung ME.Karama U. Tetrahedron Lett. 1999, 40: 7907 - 22
Groutas WC.Felker D. Synthesis 1980, 861
References
The direct hydroboration of alcohol (+)-2 without silylation of the homoallylic alcohol function (BH3·THF then H2O2, NaOH) led to the formation of 5 and 5′ with an overall yield of 50% and a 60/40 ratio of 5/5′. See ref. [18]
20Compound (+)-11′ was synthesized according to a strategy similar to the one used for obtaining (+)-11 However the deprotection of the PMP group by using CAN produced the decomposition of 11′.
Scheme 4
(-)-Slaframine was transformed into the more stable N-acetylslaframine (Ac2O pyridine): [α]D 20 -13.3 (c 0.8, EtOH) {lit. [16c] [α]D 20 -11.2 (c 1.45, EtOH)}; mp 138-140 °C (lit. [16c] mp 139-141 °C); IR (CHCl3): 3300, 1730, 1650, 1545, 1440 cm-1; 1H NMR (CDCl3, 300 MHz) δ = 6.62 (br m, 1 H), 5.25 (ddd, 1 H, J = 7.4, 4.8, 2.2 Hz), 4.21 (dt, 1 H J = 8.5, 2.9 Hz), 3.14-3.02 (m, 2 H), 2.29 (m, 1 H), 2.19 (dd, 1 H, J = 11.4, 2.6 Hz), 2.08 (s, 3 H), 2.00 (s, 3 H), 2.07-1.87 (m, 2 H), 1.81 (m, 1 H), 1.65-1.56 (m, 2 H), 1.48 (m, 1 H); 13C NMR (CDCl3, 75 MHz) δ = 170.5 (s), 169.3 (s), 74.4 (d), 67.4 (d), 57.4 (t), 52.9 (t), 43.6 (d), 30.3 (t), 28.0 (t), 23.2 (q), 21.0 (q), 20.3 (t). The physical and spectral data are identical to those reported. [16c] [n]